MAS1606 : Introductory Algebra
MAS1606 : Introductory Algebra
- Offered for Year: 2025/26
- Module Leader(s): Dr Evgenios Kakariadis
- Owning School: Mathematics, Statistics and Physics
- Teaching Location: Newcastle City Campus
Semesters
Your programme is made up of credits, the total differs on programme to programme.
Semester 1 Credit Value: | 20 |
ECTS Credits: | 10.0 |
European Credit Transfer System | |
Pre-requisite
Modules you must have done previously to study this module
Pre Requisite Comment
A level Maths or equivalent
Co-Requisite
Modules you need to take at the same time
Co Requisite Comment
N/A
Aims
The module aims to provide students of differing mathematical backgrounds with a common algebraic foundation for more advanced mathematical study. The first part of the module is devoted to complex numbers and polynomial equations in one variable. The second part treats elementary concepts of linear algebra, in particular systems of linear equations and matrix methods for their solution and applications to geometry.
Outline Of Syllabus
Complex numbers, arithmetic, Argand diagram, polar form, de Moivre's theorem, powers and roots of unity.
Vectors: sums, products (scalar, dot, cross), equations of lines and planes, orthogonality, norm.
Linear algebra: row operations, solution of linear equations, Gaussian elimination, matrix operations, determinants, inverting matrices, eigenvectors, quadratic forms.
Learning Outcomes
Intended Knowledge Outcomes
Students will gain an understanding of complex numbers and of vector and matrix methods in algebra and geometry.
Intended Skill Outcomes
Perform arithmetic manipulations with complex numbers.
Solve polynomial equations of small degree.
Use De Moivre’s Theorem to compute powers, determine n-th roots, and to obtain trigonometric identities.
Solve general systems of linear equations by Gauss eliminations. Use the dot product and the cross product to describe equations of lines and planes in three dimensional space.
Describe rotations and reflections in matrix form. Perform algebraic operations with matrices and apply them to solve linear equations.
Evaluate determinants and invert matrices. Determine eigenvalues and eigenvectors of matrices. Manipulate quadratic forms.
Students will develop skills across the cognitive domain (Bloom’s taxonomy, 2001 revised edition): remember, understand, apply, analyse, evaluate and create.
Teaching Methods
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Scheduled Learning And Teaching Activities | Lecture | 11 | 1:00 | 11:00 | Problem Classes |
Scheduled Learning And Teaching Activities | Lecture | 31 | 1:00 | 31:00 | Formal Lectures |
Scheduled Learning And Teaching Activities | Lecture | 2 | 1:00 | 2:00 | Revision Lectures |
Guided Independent Study | Assessment preparation and completion | 30 | 1:00 | 30:00 | Completion of in course assessments |
Scheduled Learning And Teaching Activities | Small group teaching | 5 | 1:00 | 5:00 | Group Tutorials |
Guided Independent Study | Independent study | 121 | 1:00 | 121:00 | N/A |
Total | 200:00 |
Teaching Rationale And Relationship
The teaching methods are appropriate to allow students to develop a wide range of skills, from understanding basic concepts and facts to higher-order thinking. Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving general feedback on marked work. Problem Classes are used to help develop the students’ abilities at applying the theory to solving problems.
Reading Lists
Assessment Methods
The format of resits will be determined by the Board of Examiners
Exams
Description | Length | Semester | When Set | Percentage | Comment |
---|---|---|---|---|---|
Written Examination | 150 | 1 | A | 80 | N/A |
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Prob solv exercises | 1 | M | 5 | Problem-solving exercises assessment |
Prob solv exercises | 1 | M | 5 | Problem-solving exercises assessment |
Prob solv exercises | 1 | M | 5 | Problem-solving exercises assessment |
Prob solv exercises | 1 | M | 5 | Problem-solving exercise assessment |
Assessment Rationale And Relationship
A substantial formal unseen examination is appropriate for the assessment of the material in this module. The format of the examination will enable students to reliably demonstrate their own knowledge, understanding and application of learning outcomes. The assurance of academic integrity forms a necessary part of the programme accreditation.
Examination problems may require a synthesis of concepts and strategies from different sections, while they may have more than one ways for solution. The examination time allows the students to test different strategies, work out examples and gather evidence for deciding on an effective strategy, while carefully articulating their ideas and explicitly citing the theory they are using.
The coursework assignments allow the students to develop their problem solving techniques, to practice the methods learnt in the module, to assess their progress and to receive feedback; these assessments have a secondary formative purpose as well as their primary summative purpose.
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- MAS1606's Timetable
Past Exam Papers
- Exam Papers Online : www.ncl.ac.uk/exam.papers/
- MAS1606's past Exam Papers
General Notes
N/A
Welcome to Newcastle University Module Catalogue
This is where you will be able to find all key information about modules on your programme of study. It will help you make an informed decision on the options available to you within your programme.
You may have some queries about the modules available to you. Your school office will be able to signpost you to someone who will support you with any queries.
Disclaimer
The information contained within the Module Catalogue relates to the 2025 academic year.
In accordance with University Terms and Conditions, the University makes all reasonable efforts to deliver the modules as described.
Modules may be amended on an annual basis to take account of changing staff expertise, developments in the discipline, the requirements of external bodies and partners, staffing changes, and student feedback. Module information for the 2026/27 entry will be published here in early-April 2026. Queries about information in the Module Catalogue should in the first instance be addressed to your School Office.