Staff Profile
Dr Agnieszka Bronowska
Senior Lecturer in Computational Medicinal Chemistry
- Email: agnieszka.bronowska@ncl.ac.uk
- Telephone: +44 (0) 191 208 3506
- Address: Chemistry
School of Natural and Environmental Sciences
Bedson Building (Room 3.35)
Newcastle University
Newcastle upon Tyne
NE1 7RU
I am a Senior Lecturer in Computational Medicinal Chemistry in the School of Natural and Environmental Sciences, Newcastle University. My research interests revolve around thermodynamics-based drug design as a strategy to inhibit ligand-protein, protein-protein, and protein-RNA interactions. I am particularly interested in development of allosteric inhibitors and in mapping of novel, cryptic "druggable" sites. My group is pursuing atomistic molecular dynamics simulations, coarse-grain simulations, and molecular docking calculations to study relationships between structure, dynamics, and biological function of relevant protein targets. We are also providing molecular simulation support to projects within the School of Natural and Environmental Sciences and the Northern Institute for Cancer Research (NICR).
Prior to taking up my appointment in Newcastle I was an Independent BIOMS Research Fellow at the University of Heidelberg, Germany, and earlier a post-doctoral fellow at Heidelberg Institute for Theoretical Studies, where I worked from 2009 in the group of Professor Frauke Graeter, a visiting scientist at the Institute of Biochemistry and Organic Chemistry in Prague, Czech Republic, where I worked with Professor Pavel Hobza, and a post-doctoral researcher at the University of Leeds, in a group of Professor Steve Homans.
Qualifications
- M.Sc. in theoretical chemistry, University of Warsaw, Poland
- Ph.D. in computational medicinal chemistry, University of Warsaw, Poland
My current research projects include, among others
- Structure-guided targeting of oxidised cysteine thiols using computational approaches.
- Kynurenine pathway as a target in treatment strategies for infectious diseases, Alzheimer disease, and for cancer research, in particular triple-negative breast cancer (TNBC).
- Structure, dynamics, and molecular mechanism of activation of aryl hydrocarbon receptor (AHR) and related transcription factors containing PAS domains.
- Dynamic allostery, cryptic binding sites, and dynamic switches in macromolecular interactions.
- “Drugging the undruggable” - probing the dynamics of intrinsically disordered proteins in order to develop inhibitors of misfolding and aggregation and potential drugs for neurodegenerative diseases.
- Halogen-bonding in molecular recognition. Rational design of halogenated cancer therapeutics and new materials with desired properties.
- Structure-based development of allosteric inhibitors of STAT3 for the treatment of triple-negative breast cancer (TNBC).
- Multiscale modelling of human-specific variant of acetylcholine nicotinic alpha7 receptor and development of small molecule ligands to selectively target nicotinic receptors.
- Targeting WIP1 for cancer research.
- PREP as a target for covalent inhibitors targeting cysteine thiols for development of therapeutics and imaging agents.
- Sigma-1 receptors in neurodegeneration and modelling of disease-linked variants of human sigma-1.
I am a Module Leader of CHY8825 (Proteins as Drug Targets).
I teach in the following modules: CHY2001, CHY2102, CHY3011, CHY3108, CHY8812, CHY8825, CHY8828, CHY8830, NES8002.
I am the Drug Chemistry MSc (PGT) Degree Programme Director.
I am enthusiastic about mentoring any motivated project students with an interest in molecular simulations (all-atom and coarse-grain molecular dynamics), molecular docking calculations, virtual screening, protein modelling, and any other aspect of computational biophysics and structure-based drug design.
I am experienced in mentoring students with disabilities (hard of hearing/deaf, autism spectrum disorders, learning difficulties).
- Carroll B, Otten E, Manni D, Stefanatos R, Menzies F, Smith G, Jurk D, Kenneth N, Wilkinson S, Passos J, Attems J, Veal E, Teyssou E, Seilhean D, Millecamps S, Eskelinen E-L, Bronowska A, Rubinsztein DC, Sanz A, Korolchuk V. Oxidation of SQSTM1/p62 mediates the link between redox state and protein homeostasis. Nature Communications 2018, 9, 256.
- Imber M, Loi VV, Reznikov S, Fritsch VN, Pietrzyk-Brzezinska AJ, Prehn J, Hamilton C, Wahl MC, Bronowska AK, Antelmann H. The aldehyde dehydrogenase AldA contributes to the hypochlorite defense and is redox-controlled by protein S-bacillithiolation in Staphylococcus aureus. Redox Biology 2018, 15, 557-568.
- Peralta D, Bronowska AK, Morgan B, Dóka É, VanLaer K, Nagy P, Gräter F, Dick TP. A proton relay enhances H2O2 sensitivity of GAPDH to facilitate metabolic adaptation. Nature Chemical Biology 2015, 11, 156-163.
- Zhou J, Bronowska AK, LeCoq J, Lietha D, Gräter F. Allosteric regulation of focal adhesion kinase by PIP₂ and ATP. Biophysical Journal 2015, 108(3), 698-705.
- Aponte-Santamaría C, Huck V, Posch S, Bronowska AK, Grässle S, Brehm MA, Obser T, Schneppenheim R, Hinterdorfer P, Schneider SW, Baldauf C, Gräter F. Force-sensitive autoinhibition of the von Willebrand factor is mediated by interdomain interactions. Biophysical Journal 2015, 108(9), 2312-2321.
- Zhou J, Aponte-Santamaria C, Sturm S, Bullerjahn JT, Bronowska A, Graeter F. Mechanism of Focal Adhesion Kinase Mechanosensing. PLoS Computational Biology 2015, 11(11), e1004593.
- White SJ, Johnson SD, Sellick MA, Bronowska AK, Stockley PG, Wälti C. The influence of two-dimensional organization on peptide conformation. Angewandte Chemie International Edition 2015, 54(3), 974-978.
- Goñi GM, Epifano C, Boskovic J, Camacho-Artacho M, Zhou J, Bronowska AK, Martín MT, Eck MJ, Kremer L, Gräter F, Gervasio FL, Perez-Moreno M, Lietha D. Phosphatidylinositol 4,5-bisphosphate triggers activation of focal adhesion kinase by inducing clustering and conformational changes. Proceedings of the National Academy of Sciences of the United States of America 2014, 111(31), E3177-E3186.
- Kolár M, Hobza P, Bronowska AK. Plugging the explicit σ-holes in molecular docking. Chem Commun (Camb) 2013, 49(10), 981-983.
- Brahmkshatriya PS, Dobes P, Fanfrlik J, Rezáç J, Paruch K, Bronowska AK, Lepsík M, Hobza P. Quantum mechanical scoring: structural and energetic insights into cyclin-dependent kinase 2 inhibition by pyrazolo[1,5-a]pyrimidines. Curr Comput Aided Drug Des 2013, 1, 118-129.
- White SJ, Morton DW, Cheah BC, Bronowska AK, Davies AG, Stockley PG, Wälti C, Johnson S. On-surface assembly of coiled-coil heterodimers. Langmuir 2012, 28(39), 13877-82.
- Johnson S, Bronowska AK, Chan J, Evans D, Davies AG, Wälti C. Redox-induced conformational change in mercaptoalkanoic acid multilayer films. Langmuir 2012, 28(16), 6632-7.
- Xia F, Bronowska AK, Cheng S, Gräter F. Base-catalyzed peptide hydrolysis is insensitive to mechanical stress. J Phys Chem B 2011, 115(33), 10126-32.
- Bronowska AK. Thermodynamics of Ligand-Protein Interactions: Implications for Molecular Design. In: Juan Carlos Moreno-Pirajan, ed. "Thermodynamics - Interaction Studies - Solids, Liquids and Gases". InTech, 2011.
- Evans DA, Bronowska AK. Implications of fast-time scale dynamics of human DNA/RNA cytosine methyltransferases (DNMTs) for protein function. Theoretical Chemistry Accounts 2010, 125(3), 407-418.
- Fanfrlík J, Bronowska AK, Rezác J, Prenosil O, Konvalinka J, Hobza P. A Reliable Docking/Scoring Scheme Based on the Semiempirical Quantum Mechanical PM6-DH2 Method Accurately Covering Dispersion and H-Bonding: HIV-1 Protease with 22 Ligands. J Phys Chem B 2010, 114(39), 12666-78.
- Syme NR, Dennis C, Bronowska A, Paesen GC, Homans SW. Comparison of Entropic Contributions to Binding in a "Hydrophilic" versus "Hydrophobic" Ligand-Protein Interaction. Journal of the American Chemical Society 2010, 132(25), 8682-8689.
- Merino A, Bronowska AK, Jackson DB, Cahill DJ. Drug profiling: knowing where it hits. Drug Discov Today 2010, 17(18), 749-56.
- Stöckmann H, Bronowska A, Syme NR, Thompson GS, Kalverda AP, Warriner SL, Homans SW. Residual Ligand Entropy in the Binding of p-Substituted Benzenesulfonamide Ligands to Bovine Carbonic Anhydrase II. Journal of the American Chemical Society 2008, 130(37), 12420-12426.
- MacRaild CA, Daranas AH, Bronowska A, Homans SW. Global changes in local protein dynamics reduce the entropic cost of carbohydrate binding in the arabinose-binding protein. Journal of Molecular Biology 2007, 368(3), 822-832.
- Shimokhina N, Bronowska A, Homans SW. Contribution of ligand desolvation to binding thermodynamics in a ligand-protein interaction. Angewandte Chemie: International Edition 2006, 45(38), 6374-6376.
- Barratt E, Bronowska A, Vondrásek J, Cerny J, Bingham R, Phillips S, Homans SW. Thermodynamic penalty arising from burial of a ligand polar group within a hydrophobic pocket of a protein receptor. Journal of Molecular Biology 2006, 362(5), 994-1003.