Stroke device A patient's perspective
Stroke device: A patient's perspective
Published on: 19 October 2016
Chris Blower, 30, is a third year Biomedical Sciences student at Newcastle University and he had a stroke when he was a child after open heart surgery. He describes his thoughts on the research:
I had a stroke at the age of seven. The immediate effect was paralysis of the right-hand side of my body, which caused slurred speech, loss of bowel control and an inability to move unaided. Though I have recovered from these immediate effects, I am now feeling the longer term effects of stroke; slow, limited and difficult movement of my right arm and leg.
My situation is not unique and many stroke survivors have similar long-term effects to mine. Professor Baker’s work may be able to help people in my position regain some, if not all, motor control of their arm and hand. His research shows that, in stroke, the brains motor pathway to the spinal cord is damaged and that an evolutionarily older signal pathway could be ‘piggybacked’ and used instead. With electrical stimulation, exercise and an audible cue the brain can be taught to use this older pathway instead.
This gives me a lot of hope for stroke survivors. My wrist and fingers pull in, closing my hand into a fist, but with the device Professor Baker is proposing my brain could be re-taught to use my muscles and pull back, opening my hand out. The options presented to me so far, by doctors, have been Botox injections and surgery; Botox in my arm would weaken the muscles closing my hand and allow my fingers to spread, surgery would do the same thing by moving the tendons in my arm. Professor Baker’s electrical stimulations is certainly a more appealing option, to me, as it seems to be a permanent solution that would not require an operation on my arm.
Behind the scenes
I was invited to look around the animal house and observe a macaque monkey undergoing a test and this has made me think about my own stroke and the effect it has had on my life.
I have never seen anything like this before and I didn’t know what to expect. The macaque monkey that I observed was calmly carrying out finger manipulation tests while electrodes monitored the cells of her spinal cord.
Although this procedure requires electrodes to be placed into the brain and spine of the animal, Professor Baker explained how the monkey had been practicing and learning this test for two years before the monitoring equipment was attached. In this way the testing has become routine before it had even started and the animal was in no pain or distress, even at the sight of a stranger (me).
The animals’ calm, placid temperaments carry over to their living spaces; with lots of windows, natural light and high up spaces the macaques are able to see all around them and along the corridors. This means that they aren’t feeling threatened when people approach and are comfortable enough that even a stranger (me, again) can approach and say ‘hello’.
From my tour of the animal house at the Institute of Neuroscience I saw animals in calm, healthy conditions, to which the tests were just a part of their daily routine. Animal testing is controversial but I think that the work of Professor Baker and his team is important in helping people who have suffered stroke and other life-changing trauma to regain their independence and, often, their lives.