MKT3019 : Data Driven Marketing Decisions
- Offered for Year: 2024/25
- Available to incoming Study Abroad and Exchange students
- Module Leader(s): Mr Nick Howey
- Owning School: Newcastle University Business School
- Teaching Location: Newcastle City Campus
Semesters
Your programme is made up of credits, the total differs on programme to programme.
Semester 1 Credit Value: | 10 |
Semester 2 Credit Value: | 10 |
ECTS Credits: | 10.0 |
European Credit Transfer System | |
Aims
This module aims to develop theoretical knowledge and practical skills essential to tackle data driven marketing decisions in traditional and contemporary digital marketing practice. The module will introduce data identification, cleaning and handling techniques in addition to appropriate analysis and visualisation methods key to business and marketing decision making. Teaching delivery will focus on delivering computer based analytics software literacy in addition to conceptual data model development process in solving complex business and marketing problems.
A number of industry standard analytics tools will be used, in addition to problem based case studies, to enhance knowledge and understanding of marketing analytics in real life scenario.
The module aims to equip students with advanced analytical skills that may offer supportive complementary knowledge and skills to Stage 3 capstone modules such as MKT3097 (Marketing Consultancy Project) and MKT3096 (Contemporary Marketing Dissertation).
Guided Independent Study will help students widen their knowledge and understanding of the subject area through a range of learning activities including extended reading, reflection, research, and problem based exercise practice.
Outline Of Syllabus
Indicative topics include:
• Understanding and framing data driven marketing problems
• Advanced data analytics for marketing and business decision making
• Introduction to data types, data wrangling, data storage architecture and data retrieval process
• Importance of Big Data
• Descriptive and predictive analytics
• Data visualisation, reporting and communication techniques
• Digital Marketing data analytics
• Social Media data analysis
Teaching Methods
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Guided Independent Study | Assessment preparation and completion | 1 | 60:00 | 60:00 | Time for students to complete formative and summative coursework and assessments |
Scheduled Learning And Teaching Activities | Lecture | 16 | 1:00 | 16:00 | PiP Lectures |
Guided Independent Study | Directed research and reading | 1 | 66:00 | 66:00 | Estimated based on 3 hours per teaching week (not necessarily to do in that week) |
Scheduled Learning And Teaching Activities | Small group teaching | 12 | 2:00 | 24:00 | PiP Workshops - lab based |
Guided Independent Study | Independent study | 1 | 34:00 | 34:00 | N/A |
Total | 200:00 |
Teaching Rationale And Relationship
Lectures are used to present the underlying theory and concepts related to business and marketing analytics. Taught sessions will focus on teaching important analytical methods in addition to delivering knowledge and skills essential in identifying data types, data wangling process, data importation methods, data analysis and visualisation techniques in relation to specific business and marketing needs.
Practical sessions will allow students to apply theory to real world business and marketing problems using sophisticated analytics tools. Besides theorical knowledge, the analytical skills developed in computer-based workshops, structuring, cleaning, manipulating and analysing raw business/marketing data, will provide valuable knowledge and skills essential to contemporary industry practice.
Guided independent study provides students with the opportunity to consolidate their understanding of material presented in lectures and practical sessions, and to prepare for formative and summative assessments.
Both assessments will test the listed learning outcomes.
There may be a limit to the number of students who can enrol into the module.
Assessment Methods
The format of resits will be determined by the Board of Examiners
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Report | 1 | A | 50 | 2000 words |
Report | 2 | A | 50 | 2000 words |
Formative Assessments
Formative Assessment is an assessment which develops your skills in being assessed, allows for you to receive feedback, and prepares you for being assessed. However, it does not count to your final mark.
Description | Semester | When Set | Comment |
---|---|---|---|
Lab exercise | 1 | M | Formative assessment and feedback will be ongoing based on case based exercises. |
Written exercise | 1 | M | Assessment briefing and draft review |
Lab exercise | 2 | M | Formative assessment and feedback will be ongoing based on case based exercises. |
Written exercise | 2 | M | Assessment briefing and draft review. |
Assessment Rationale And Relationship
The individual report based assessments will help to evaluate achievement of learning outcomes, both, knowledge and skill based. Students will be asked to conceptualise marketing analytics problems based on given case scenario. They should handle, clean, analyse, visualise and report strategic insights from raw data using appropriate analytical tools, while making appropriate recommendations for business development and process improvement.
Semester 1 assessment will focus more on traditional marketing and descriptive analytics.
Semester 2 assessment will focus on advanced analytics problems including digital analytics, social media sentiment analysis, and predictive analytics.
The assessments will provide the opportunity to demonstrate theoretical and technical knowledge in addition to computer based analytics software literacy.
Reading Lists
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- MKT3019's Timetable