SES2005 : Applied Biomechanics
- Offered for Year: 2024/25
- Available for Study Abroad and Exchange students, subject to proof of pre-requisite knowledge.
- Module Leader(s): Dr Iain Spears
- Lecturer: Dr Daniel Eaves
- Owning School: Biomedical, Nutritional and Sports Scien
- Teaching Location: Newcastle City Campus
Semesters
Your programme is made up of credits, the total differs on programme to programme.
Semester 1 Credit Value: | 20 |
ECTS Credits: | 10.0 |
European Credit Transfer System | |
Aims
This module will describe how the principles covered in Introduction to Biomechanics (SES1003) can be applied to:
• inform clinical decision making
• reduce injury risk
• improve sporting performance
The module will provide students with the opportunity to develop hands-on skills to measure, analyse and interpret the biomechanics of human movement across a range of clinical, recreational and sporting contexts.
In addition, basic coding skills for script-based analysis programs (such as MATLAB) are becoming essential for those wishing to pursue further study or employment in the field of biomechanics. As such, a secondary aim of this module is to expose students to script-based languages and provide them with the skills and confidence to produce simple scripts to analyse biomechanical data.
Outline Of Syllabus
The module will be delivered as a combination of lecture materials and laboratory sessions, with learning materials being based on theory, peer-reviewed research and real-world examples.
Topics covered in the module include:
• Review of important mathematical skills required for biomechanics
• Introduction to computer script based analysis
• Choosing the right tool to measure human movement
• Visualising and analysing biomechanical data
• Measurement of force
• Three dimensional motion analysis and the measurement of kinematics and kinetics
• Measurement of muscle activity
• Measuring biomechanics in the community and on the sporting field using wearable technology
Teaching Methods
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Guided Independent Study | Assessment preparation and completion | 5 | 2:00 | 10:00 | Completing and reflecting on practical sessions |
Structured Guided Learning | Lecture materials | 4 | 1:00 | 4:00 | Non sync online - Programming delivery problem solving |
Structured Guided Learning | Lecture materials | 10 | 1:30 | 15:00 | Non-synchronous online - delivery via Recaps/short recordings/tutorials/problem solving |
Guided Independent Study | Assessment preparation and completion | 1 | 35:00 | 35:00 | Essay 1 |
Guided Independent Study | Assessment preparation and completion | 1 | 25:00 | 25:00 | Practical Report |
Scheduled Learning And Teaching Activities | Practical | 5 | 3:00 | 15:00 | PIP - providing students skills to collect valid & reliable data & further understanding of material |
Guided Independent Study | Directed research and reading | 1 | 87:00 | 87:00 | Reading and writing up lecture notes and reading journal articles related to the lectures |
Scheduled Learning And Teaching Activities | Small group teaching | 4 | 2:00 | 8:00 | PIP - Programming Q&A sessions |
Scheduled Learning And Teaching Activities | Module talk | 1 | 1:00 | 1:00 | Synchronous online introduction to the module |
Total | 200:00 |
Teaching Rationale And Relationship
Lecture materials will be used to revise key biomechanics concepts and introduce how they may be applied in clinical, recreational and sporting contexts. Lecture material will be based on theory, peer-reviewed research articles and real-world examples. Discrete examples will be examined in further detail during lab-based practical sessions, where students will gain hands-on experience using biomechanical equipment commonly used in industry and research.
We will deliver 4 sessions designed to expose students to script-based analysis programs (such as MATLAB) and give them the opportunity to produce simple computer code to facilitate the biomechanical analysis of human movement. Each session will comprise a 1-hour non-synchronous online lecture followed by a 2-hour PIP session in the computer cluster in which we can provide technical and academic support to the students during their active learning.
Assessment Methods
The format of resits will be determined by the Board of Examiners
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Practical/lab report | 1 | M | 50 | Word count: 1000 words |
Essay | 1 | M | 50 | Word count: 1000 words |
Formative Assessments
Formative Assessment is an assessment which develops your skills in being assessed, allows for you to receive feedback, and prepares you for being assessed. However, it does not count to your final mark.
Description | Semester | When Set | Comment |
---|---|---|---|
Lab exercise | 1 | M | Students will complete a lab workbook during each laboratory session, the results of which will be provided in a later lecture. |
Assessment Rationale And Relationship
The lab workbook (formative) and report (summative) are designed to assess how well students apply the theory described in the lecture materials to collect biomechanical data, calculate salient biomechanical principles and express them in a meaningful manner. The lab workbook will also act as a useful reference for any future biomechanical analysis students perform during optional placements, stage 3 research projects, post graduate education or employment.
For the final essay, students will be provided with a dataset and information about how and why it was collected. They will have to visualise and analyse the data using techniques they have learned in the module. Students will be expected to interpret the data in the context of peer-reviewed literature and communicate their findings in a manner fitting of the intended audience (either clinician, athlete, coach or member of the general public). More than one dataset will be available for the students to choose from. This final essay allows students to concentrate more thoroughly on a single topic and show their ability to identify the correct analysis techniques more independently than in the laboratory sessions, as well as integrate information they gain from the current biomechanical literature. The essay format will also help build skills and confidence writing in a longer format.
Reading Lists
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- SES2005's Timetable