PHY8044 : Quantum Information & Technology
- Offered for Year: 2024/25
- Module Leader(s): Dr Adam Stokes
- Lecturer: Dr Martin Johnston, Dr Obinna Abah
- Owning School: Mathematics, Statistics and Physics
- Teaching Location: Newcastle City Campus
Semesters
Your programme is made up of credits, the total differs on programme to programme.
Semester 1 Credit Value: | 10 |
Semester 2 Credit Value: | 10 |
ECTS Credits: | 10.0 |
European Credit Transfer System |
Aims
This module aims to introduce students to the cutting-edge field of quantum technology, in which we learn how the peculiarities of quantum physics can be harnessed to come up with new ways of doing things such as compute, communicate and sense.
Outline Of Syllabus
This course will give an overview of quantum technology and quantum information theory, with an emphasis on quantum computing , quantum communication, and practical implementations. The topics covered include: Classical and quantum bits (qubits); Superposition and entanglement; Bell states and Bell inequality; Quantum gates and circuits; Quantum teleportation; Problem complexity and quantum speed-up; Quantum algorithms; Density matrix, pure and mixed states; Decoherence; Quantum error correction and key distribution; Practical quantum computers: requirements and realisations
Teaching Methods
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Scheduled Learning And Teaching Activities | Lecture | 44 | 1:00 | 44:00 | Formal Lectures |
Guided Independent Study | Assessment preparation and completion | 30 | 1:00 | 30:00 | Completion of in course assignments |
Guided Independent Study | Independent study | 126 | 1:00 | 126:00 | Preparation time for lectures, background reading, coursework review |
Total | 200:00 |
Teaching Rationale And Relationship
The teaching methods are appropriate to allow students to develop a wide range of skills, from understanding basic concepts and facts to higher-order thinking. Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving general feedback on marked work.
Assessment Methods
The format of resits will be determined by the Board of Examiners
Exams
Description | Length | Semester | When Set | Percentage | Comment |
---|---|---|---|---|---|
Written Examination | 150 | 2 | A | 80 | N/A |
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Prob solv exercises | 1 | M | 15 | Problem-solving exercises assessment |
Prob solv exercises | 2 | M | 5 | Problem-solving exercises assessment |
Assessment Rationale And Relationship
A substantial formal unseen examination is appropriate for the assessment of the material in this module. The format of the examination will enable students to reliably demonstrate their own knowledge, understanding and application of learning outcomes. The assurance of academic integrity forms a necessary part of programme accreditation.
Exam problems may require a synthesis of concepts and strategies from different sections, while they may have more than one ways for solution. The examination time allows the students to test different strategies, work out examples and gather evidence for deciding on an effective strategy, while carefully articulating their ideas and explicitly citing the theory they are using.
The coursework assignments allow the students to develop their problem solving techniques, to practise the methods learnt in the module, to assess their progress and to receive feedback; these assessments have a secondary formative purpose as well as their primary summative purpose.
Reading Lists
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- PHY8044's Timetable