MAS8812 : Quantum Fluids
- Offered for Year: 2024/25
- Module Leader(s): Professor Nikolaos Proukakis
- Lecturer: Mr Richard Tattersall
- Owning School: Mathematics, Statistics and Physics
- Teaching Location: Newcastle City Campus
Semesters
Your programme is made up of credits, the total differs on programme to programme.
Semester 1 Credit Value: | 10 |
Semester 2 Credit Value: | 10 |
ECTS Credits: | 10.0 |
European Credit Transfer System |
Aims
To describe the phenomenon of Bose-Einstein condensation and the main mathematical and physical features of quantum fluids (e.g. atomic gases, superfluid helium, etc).
Module Summary
The mechanism of Bose-Einstein condensation in its most elementary form for ideal gases. The main phenomenology of atomic condensates and superfluid liquid helium. The mathematical models which are used to determine the ground state and linear/nonlinear excitations, such as solitons and vortices.
Outline Of Syllabus
Bose-Einstein condensation of an ideal gas. Condensate fraction. Liquid helium and superfluidity. The two-fluid model and its consequences (e.g. thermal counterflow, second sound, etc). Vortex lines in rotating superfluids. Quantisation of the circulation. Vortex lattices. Vortex tangles. The Gross-Pitaevskii equation. The Madelung transformation and the fluid dynamics interpretation of the Gross-Pitaevskii equation. The Thomas-Fermi approximation and the ground state. Stability of Gross-Pitaevskii equation and the energy functional. The dispersion relation and linear waves (phonons). Landau critical velocity. Nonlinear waves (dark and bright solitons) and vortices. Vortex dynamics in two and three dimensions. Overview of relevant experimental findings. Quantum turbulence, Josephson effects, or other topics of current research (e.g. two-component condensates, dipolar condensates, polariton condensates, etc).
Teaching Methods
Teaching Activities
Category | Activity | Number | Length | Student Hours | Comment |
---|---|---|---|---|---|
Scheduled Learning And Teaching Activities | Lecture | 2 | 1:00 | 2:00 | Revision Lectures |
Scheduled Learning And Teaching Activities | Lecture | 42 | 1:00 | 42:00 | Formal Lectures |
Guided Independent Study | Assessment preparation and completion | 30 | 1:00 | 30:00 | Completion of in course assessments |
Scheduled Learning And Teaching Activities | Lecture | 10 | 1:00 | 10:00 | Problem Classes |
Guided Independent Study | Independent study | 116 | 1:00 | 116:00 | Preparation time for lectures, background reading, coursework review |
Total | 200:00 |
Jointly Taught With
Code | Title |
---|---|
PHY8042 | Quantum Fluids |
Teaching Rationale And Relationship
The teaching methods are appropriate to allow students to develop a wide range of skills, from understanding basic concepts and facts to higher-order thinking. Lectures are used for the delivery of theory and explanation of methods, illustrated with examples, and for giving General feedback on marked work. Problem Classes are used to help develop the students’ abilities at applying the theory to solving problems.
Assessment Methods
The format of resits will be determined by the Board of Examiners
Exams
Description | Length | Semester | When Set | Percentage | Comment |
---|---|---|---|---|---|
Written Examination | 90 | 2 | A | 60 | N/A |
Exam Pairings
Module Code | Module Title | Semester | Comment |
---|---|---|---|
Quantum Fluids | 2 | N/A |
Other Assessment
Description | Semester | When Set | Percentage | Comment |
---|---|---|---|---|
Prob solv exercises | 1 | M | 15 | Problem-solving exercises assessment |
Prob solv exercises | 2 | M | 5 | Problem-solving exercises assessment |
Report | 2 | M | 20 | Technical report |
Assessment Rationale And Relationship
A substantial formal unseen examination is appropriate for the assessment of the material in this module. The format of the examination will enable students to reliably demonstrate their own knowledge, understanding and application of learning outcomes. The assurance of academic integrity forms a necessary part of programme accreditation.
Examination problems may require a synthesis of concepts and strategies from different sections, while they may have more than one ways for solution. The examination time allows the students to test different strategies, work out examples and gather evidence for deciding on an effective strategy, while carefully articulating their ideas and explicitly citing the theory they are using.
The coursework assignments allow the students to develop their problem solving techniques, to practise the methods learnt in the module, to assess their progress and to receive feedback; these assessments have a secondary formative purpose as well as their primary summative purpose.
Reading Lists
Timetable
- Timetable Website: www.ncl.ac.uk/timetable/
- MAS8812's Timetable